Predicting groundwater levels using linear regression and neural networks
نویسنده
چکیده
Water resources managers can benefit from accurate prediction of the availability of groundwater. In this project I present two models to predict groundwater levels in an unconfined shallow aquifer in the Searsville basin, part of the Jasper Ridge Biological Preserve. The input data (ie, features) for the models includes local weather, lake stage, and stream flow data, and moving averages of the weather, stage and stream flow data taken over time-frames of one week, one month, three months and six months. When moving averages are included as features, a linear regression model does well at predicting summer groundwater levels. In contrast, a feed-forward time-delay neural network does well at predicting winter groundwater levels. In combination, these models can provide useful predictions for groundwater levels throughout the year. Feature analysis indicates that the most important features are the longer time-frame moving averages that measure the “seasonality” of the example.
منابع مشابه
Groundwater level fluctuation forecasting Using Artificial Neural Network in Arid and Semi-Arid Environment
In arid and semi-arid environments, groundwater plays a significant role in the ecosystem. In the last decades, groundwater levels have decreased due to the increasing demand for water, weak irrigation management and soil damage. For the effective management of groundwater, it is important to model and predict fluctuations in groundwater levels. In this study, groundwater table in Kashan plain ...
متن کاملبررسی کارایی روشهای رگرسیون بردار پشتیبان، شبکه عصبی پرسپترون چندلایه و رگرسیون خطی چندمتغیره به منظور پیشبینی تراز سطح آب زیرزمینی (مطالعه موردی: دشت شهرکرد)
Accurate and reliable simulation and prediction of the groundwater level variation is significant and essential in water resources management of a basin. Models such as ANNs and Support Vector Regression (SVR) have proved to be effective in modeling nonlinear function with a greater degree of accuracy. In this respect, an attempt is made to predict monthly groundwater level fluctuations using M...
متن کاملPredicting peak particle velocity by artificial neural networks and multivariate regression analysis - Sarcheshmeh copper mine, Kerman, Iran
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of P...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کامل